Analisi e ricerca semantica

Migliora la corrispondenza tra annunci di lavoro e candidati con strumenti di analisi e ricerca semantica per il recruiting

L'analisi semantica nel settore delle risorse umane

Dall’introduzione di sistemi intelligenti nel processo di recruiting, la ricerca semantica viene utilizzata sempre più spesso nel settore HR. Quando il numero di candidature è molto elevato, i recruiter hanno la necessità di accelerare lo screening dei CV e altre attività più ripetitive per poi dedicarsi alla selezione e scoperta dei migliori talenti.

Avere a disposizione un motore di ricerca semantica li supporta quotidianamente nello svolgimento dei task senza rischiare di compromettere la qualità dei risultati. Effettuando una ricerca all’interno del database CV, gli algoritmi semantici individuano sia CV contenenti le keyword inserite dal selezionatore, sia quelli che presentano parole con un significato simile intercettando anche i candidati che non hanno inserito la specifica chiave di ricerca nel proprio CV.

Come funziona il motore di ricerca semantica di Inda

Il motore semantico di Inda permette di effettuare un’analisi del significato semantico di parole e di testi. Lavorando sulle parole chiave e sulla ricerca e comprensione dei loro sinonimi, Inda è in grado di potenziare la ricerca semantica dei candidati, assegnare uno score di similarità semantica ad ogni candidato creando un ranking delle candidature e individuare i candidati migliori per un annuncio di lavoro confrontandoli con altri profili simili.

  • Ricerca semantica
  • Scoring semantico
  • Matching semantico

ricerca semantica per il recruiting

Ricerca per chiavi semantiche

Attraverso algoritmi di Deep Learning e la creazione di Word Embedding e Document Embedding, è possibile effettuare una ricerca dei CV basata su specifiche keyword. Superando i limiti della ricerca tradizionale, i recruiter possono effettuare ricerche mirate anche in ambiti lontani dalla propria area di competenza e, contemporaneamente, ampliare il proprio vocabolario. Il risultato finale è un set di CV con testi semanticamente vicini alla chiave di ricerca utilizzata, anche in assenza di una corrispondenza diretta.

scoring semantico dei candidati

Attribuzione di uno score

Come conseguenza delle operazioni di ricerca e analisi dei curricula, viene attribuito uno score di similarità semantica ai CV dei candidati per valutare la rispondenza della ricerca: da 100% (matching perfetto) a 0 (ambiti semantici estremamente distanti).  Assegnare un punteggio di rilevanza ad ogni CV consente di ordinare i profili risultati dalla ricerca, creando un database di valore in vista di ricerche future.

candidati simili

Matching tra annunci di lavoro e candidati

Partendo da un annuncio di lavoro, l'operazione di Document Embedding rende più funzionale il matching tra Job description e profili dei candidati.  Grazie alla ricerca dei candidati simili, Inda perfeziona l'esito della ricerca individuando anche i CV semanticamente simili a quello ottenuto come risultato finale con l'obiettivo di selezionare i migliori candidati.

Vuoi migliorare il tuo recruiting?

Richiedi una demo di Inda per scoprire come selezionare i migliori talenti utilizzando le tecniche di analisi e ricerca semantica

Come si ottiene l'analisi dei CV e la ricerca semantica?

Attraverso l'intelligenza artificiale di Inda e, nello specifico, grazie a tecniche di Natural Language Processing e Semantic Search , sarà più facile monitorare la qualità del tuo recruiting.

E' una tecnica del Natural Language Processing (NLP) che permette di creare un mapping che associa a ogni parola ("monogramma", cioè una singola parola o un “n-gramma”, cioè una sequenza di n parole) un punto in uno spazio multidimensionale. Il mapping viene creato in modo che parole con significati semantici simili fra loro siano mappate in punti matematicamente vicini.

A partire dal mapping fra parole e vettori si può costruire un mapping di documenti testuali, quali CV e job description, in uno stesso spazio vettoriale.

I mapping precedentemente descritti permettono di calcolare la vicinanza semantica fra diverse parole, fra una parola e un testo o fra due testi, riconducendo tutte queste operazioni a calcoli matematici fra i corrispondenti vettori.

I vantaggi dell'analisi e ricerca semantica per il recruiting

Facilita la ricerca dei candidati nel database CV
Riduce il tempo di pre-screening
Agevola la selezione di talenti
Aumenta la produttività del team HR

CONTATTI

+39 011 586 2407
Via Amedeo Avogadro, 20 – Torino

Copyright © 2020 Inda

Inda è una soluzione di Intervieweb S.r.l. Società del gruppo Zucchetti P.IVA: 10067590017

Privacy policy   Cookie policy