Semantic research: a guide for recruiters and HR

Artificial intelligence and big data are revolutionising many sectors. Today, Machine Learning systems recognize and classify images, sounds and words with increasingly precise results. This revolution is also about to make an arrival in the field of recruitment, and. in a few years nothing will be the same again. Recruiter and HR teams already have the possibility of using advanced softwares that offer a deep understanding of human language and its interpretation (Natural Language Processing) to perform operations that speed up the hiring process and offer intelligent suggestions. For example, semantic search.

If you are a recruiter and want to take advantage of this wave of change, it is important to better understand what is meant by Artificial Intelligence and specifically Semantic Search

What is meant by semantic search?

Today there is a lot of talk about semantic search in a technological context. But is there a correlation between our increasingly digitalised daily life and the study of the meaning of words?

Here are two brief definitions that help us understand semantic search

  1. Semantic is the branch of linguistics that studies the meaning of words, sets of individual letters, and sentences of texts;
  2. Semantic search: tries to improve the accuracy of the search done in web search engines by trying to understand the intent of the researcher and the contextual meaning of the terms used. Its goal is to generate more relevant results. Semantic search considers the research context, the location of the researcher, the intent, the variation of words, synonyms, generalized and specialised queries, matching concepts, and queries in natural language.

Some examples

The truth is that every day we use multiple digital technological tools that facilitate various routine operations.

Two examples that have conditioned and simplified our day to day lifestyle are:

  1. The Google search engine that we all use, for one purpose or another, every day. The Google algorithm not only evaluates the individual keywords entered in the search we are ding, but also the relationship between the words themselves. It also tries to analyze the context in which the words are used by determining the degree of correspondence with the indexed web content.
  2. The recognition of language by the Siri and Cortana virtual assistants. They slowly learn from our language to meet specific needs with increasingly personalized results.

And in recruiting?

As we mentioned earlier, AI is also having a significant impact within recruiting:

chatbot AI

 

  • a chat bot: on the career page it allows you to make the attraction phase more fluid by understanding the naturale language of people and interacting naturally with potential candidates. It can also help to gather more information on candidates thanks to the ability to maintain high interaction;
  • video-recruiting platforms are able to evaluate not only the quality of the candidate answers, but also that of the voice, the rhythm of the speech, the energy of the voice, the use of fillers, facial micro-expressions and body language (para-verbal).

When does semantic research become truly indispensable in the job of a recruiter? Semantic search comes to the aid of recruiters and HR when they have to manage large quantities of applications, it can help by speeding up many routine activities. This allows recruiters and HR teams to focus on the actual recruitment task rather than lengthy adminitrative tasks.

In recent years, Applicant Tracking Systems (ATS) such as In-recruiting have experienced an incredible evolution, so much so that today it is possible to make a clear distinction between traditional ATS and intelligent ATS.

From traditional ATS to intelligent ATS

The traditional ATS allows the recruiter to simplify and manage the entire recruitment process: from the posting job phase, to the application, up to the actual selection and onboarding. However, by not implementing artificial intelligence algorithms, these ATS are structurally linked to the level of competence and input of the user.

With an ATS that implements a semantic analysis search tool, such as Inda, the advantages are obvious. The semantic search includes the meaning of words and the user’s intention. In this way, during a query (doing a search for a candidate in the CV database), the recruiter no longer needs to enter the exact search words. This means there is no risk of discarding qualified candidates who use different words within their CV.

Let’s take an example: let’s say you are looking for a Java programmer. Imagine that several candidates have the required skills, but that in their CVs they have used different terms from those you typed in the search you are doing on your ATS (for example, writing “developer” instead of “programmer”). Within a traditional ATS you will only find candidates who have entered that specific term.

An ATS equipped with semantic search will understand the meaning of the word and related phrases, suggesting to the recruiter the candidates who fall within the correct parameters even if they have used different words in their CVs.

keywords visualization for semantic research

 

The difference is immediately obvious: using semantic search it’s possible to halve the time spent on CV screening, without having to sift through hundreds of CVs, job titles, skills, synonyms, and related terms used by candidates.

Benefits for the recruiter

In conclusion, let’s try to draw up a quick list of the possible advantages that semantic search offers to the recruiter:

  • reduction of candidate screening times
  • recruiters are not required to type in all skills, nor do they need to have industry-specific knowledge to find the right candidates in the database;
  • more time to devote to strategic activities (e.g. evaluation of the candidates real skills);
  • greater productivity of the entire HR department.

Contact us

+39 0371 5948800
Corso Duca d’Aosta, 1 – Turin
Via Caviglia 11 –  Milan

Copyright © 2021 Inda

Inda is a solution by Intervieweb S.r.l. part of the Zucchetti Group P.IVA: 10067590017

Privacy policy   Cookie policy